Impact of technological support on the workload of software prototyping
Suleri, Sarah; Jarke, Matthias (Thesis advisor); Prinz, Wolfgang (Thesis advisor); Schröder, Ulrich J. (Thesis advisor)
Aachen : RWTH Aachen University (2021)
Doktorarbeit
Dissertation, RWTH Aachen University, 2021
Kurzfassung
Das Prototyping ist eine weit verbreitete iterative Technik für das Brainstorming, die Kommunikation und die Bewertung von UI-Designs. Diese Forschung zielt darauf ab, diesen Prozess unter drei Aspekten zu analysieren: traditionelles UI-Prototyping, Rapid Prototyping und Prototyping für Barrierefreiheit. Wir schlagen drei neuartige Ansätze vor und realisieren sie durch die Einführung von drei Artefakten: 1) Eve, eine skizzen-basierte Prototyping-Werkbank, die die Automatisierung der Umwandlung von Prototypen mit geringer Wiedergabetreue in höhere Wiedergabetreue unterstützt, 2) Kiwi, eine Bibliothek mit UI-Design Patterns und Guidelines zur Unterstützung des Pattern-gesteuerten Prototypings von UI-Designs, 3) Personify, eine Persona-basierte Bibliothek mit UI-Design Guidelines für barrierefreies UI-Prototyping. Wir evaluieren die Nutzbarkeit dieser Artefakte, und die Ergebnisse weisen auf eine gute Nutzbarkeit und Lernfähigkeit hin. Darüber hinaus verwenden wir NASA-TLX, um die Auswirkungen der Verwendung dieser drei neuartigen Ansätze auf die subjektive Arbeitsbelastung der Designer während des Software-Prototyping-Prozesses zu untersuchen. Unsere Analyse der Arbeitsbelastung zeigt, dass Eves umfassende Unterstützung im Gegensatz zum traditionellen Prototyping-Ansatz den Wechsel zwischen verschiedenen Prototyping-Tools überflüssig macht, während die Prototypen mit niedriger, mittlerer und hoher Wiedergabetreue durchlaufen werden. Folglich ist die subjektive Arbeitsbelastung von Designern, die den von Eve angebotenen umfassenden Ansatz nutzen, deutlich geringer. Auch die mentale Belastung, die zeitliche Belastung und der Arbeitsaufwand sind deutlich geringer, und die wahrgenommene Gesamtleistung steigt mit dem umfassenden Ansatz um das Fünffache (Eve). In ähnlicher Weise ist die subjektive Arbeitsbelastung von der Designer, die den Pattern-getriebenen Ansatz mit Kiwi verwenden, deutlich geringer als die Arbeitsbelastung, die mit dem traditionellen Ansatz des Rapid Prototyping verbunden ist. Insbesondere sind der physische Aufwand und die physische Beanspruchung beim Rapid Prototyping bei Verwendung des Pattern-getriebenen Ansatzes deutlich geringer als beim traditionellen Ansatz des Rapid Prototyping. Und schließlich ist die subjektive Arbeitsbelastung, die Designer mit dem Persona-getriebenen Ansatz von Personify erfahren, signifikant geringer als die Arbeitsbelastung, die mit dem traditionellen Ansatz des Prototyping für die Zugänglichkeit erfahren wird. Genauer gesagt, es gibt einen signifikanten Rückgang der mentalen Anforderungen und des Aufwands für das Prototyping zugänglicher UI’s während der Verwendung von Personify. Diese Arbeit zielt darauf ab, frühere Arbeiten zum UI-Prototyping auszuweiten und ist allgemein anwendbar, um die Auswirkungen der Verwendung von tiefem Lernen, UI-Entwurfsmustern und Personas auf die Arbeitsbelastung beim UI-Prototyping zu verstehen.
Identifikationsnummern
- DOI: 10.18154/RWTH-2021-02114
- RWTH PUBLICATIONS: RWTH-2021-02114